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A statistial ensem bl of large eddy simulations is run sim ultaneocusly for the same

ow . The hfom ation provided by the di erent lrgescale vebcity elds isused in an
ensen ble-averaged version of the dynam icmodel. T his produces Jbcalm odel param eters
that only depend on the statistical properties of the ow.An in portant property of
the engem bleaveraged dynam i procedure is that it does not require any spatial aver-
agig and can thus be used In fully inham ogeneous ows. A ko, the enssmble of LES's
provides statistics of the largescale vebcity that can be used for buiding new m odels
for the subgrid-scale stress tensor. The ensam bleaveraged dynam i procedure has been
in plem ented w ith various m odels or three ows: decaying isotropic turbulence, foroed
isotropic turbulenoce, and the tin edevelbping plane wake. I tis fbund that the resutsare
aln ost ndependent of the num ber of LES’s in the statistiral ensem ble provided that the
enzam ble contains at least 16 realisations.

1. Introduction

T he num ber of degrees of freedam needed to characterize a velbocity eld u; that corre-
sponds to a turbulnt ow isknown to crease as Re'/4 (Re is the R eynolds num ber) n
three din ensional turbulnt systen s. D irect num erialsin ulations DN S) of the N avier(
Stokes equations govemning the evolition of such systeam s are thus lim ited tom oderately
am all R eynolds num bers. There is thus an nterest n develbpig techniques n which
only a fraction of the totalnum ber of degrees of freedom is actually smulated . Am ong
these techniques, Large Eddy Sin ultion LES) and R eynoXs A veraged N avier{Stokes
RANS) sinukhtion have attxacted much nterest 1 the past few decades. InLES, the
num ber of degrees of freedam s reduced by using a gpatial Iering:

U (x) = /dyG'(x—y)ul(y), 11

where (7 is the Yer kemeland u; is the LES ed. InRANS, an ensan ble averaging is
used to de ne the RANS eB U;:

Ui = {w), 12)
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Inboth cases, the equations forii; or for l/; contain an unknown stress term  that requires
m odelling. T he purpose of the approach developed here is to cam bine conospts from the
two m ethods to produce a statistial version of LES.

T he present approach ism otwvated by the fact that, in both LES and RANS, m odels
for the degrees of freedom  that have been elin mated are nspired from statistical theories
of urbulence. Itis thus in plicitly assum ed that the Itering and ensem ble averaging can
both be regarded as projective operations that associate a num ber of di erent vebcity
realisationsw ith a shgle LES orRANS eld.There &, however, an m portant di erence
betw een ensam ble averaging and spatdal ltering. The ensam bl averaghg operation re-
duces the num ber of degrees of freedam by somuch that alm ost no usefiil nform ation on
the uctnationsdu; = u; — UU; can be deduced from the know ledge of U; albne. On the
other hand, n LES the statistics of the unresolved scales u} = u; — I; must be cosely
related to the statistics of the resolved scales U; sinee there is no clar scale separation
betw een theam . Hence, know ledge of the statistical properties of the LES  elds u; should
be hebful n devebping LES m odels. The advantage of studyng a statistical ensem -
bk cfLES’s s the ability to extract statistial nform ation for buidng m odels for the
unresolved scaks. Thiswill be expbred in Section 3.

T he de nition of equivalent and ndependent LES  eHds is not necessarily obvious and
should probably depend on the m otivation fr the sinulation. W e propose In Secton 2
som e conditions under which two sinultions of a turbulent ow w ili be supposed to be
ndependent and equivalnt. InSection 3, wew illshow that the know ledgeofan ensam bk
of LES‘syieldsa good fram ework for developing a ocalversion of the dynam i procedure
n which m odel param eters are com puted ushg statistical quantities. T he application of
this approach to isotropi turbulence is presented in Section 4. Application to the wake

ow Is presented In Section 5. Inthis last case, it is shown that the know ledge of an
ensam ble of realisations can be used to develop new m odels that explicitly ncorporate
averaged quantities m ade available through the ensamble.

2. Statistical ensemble of LES's

T he equation or lhrge eddy san ulation (LES) isobtained by applyng a spatial lter to
the N avier{Stokes equatins. The LE S equation thus describes the evolution ofa  Yered
vebcity el %, whith explicitly depends on the sm all scales through the subgrd scale

stress 7 = UU; — U Uyt

U, + O, = ~Op+ VG - a1, . 21)
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For sim plicity, we only consider ncom pressble  ows, In which p, the pressure divided by
the density, is deteam ned by the ncom pressibility condition. The unknown tensor 7i;

appears in the equation r the Jarge-scale vebcity T; but it depends on the sn all-scale
vebcity eld. The purpose of this study is to explre the advantages of sim ultaneously
running several statistically equivalent and hdependent LES's for the same ow. In
practice, we thus replace the equation (2 1) by the foliow ng set ofequations for R Jarge-
sale velcity edsu; :

g =T PETi
0T + 0T,

= =9 + nV - O;1]; 22)

wherer = 1,..., R.

Ttis worth m entionng that the use of an ensembl of LES’s is not per sem uch m ore
expensive than the use of a single realisation. To show this, ket us consider a stationary
LES and denote by t; the tine of the transient period between the begnnng of the
simulation and the tin e at which the turbulence becom es fully developed. Let us alo
denoteby t, the tin e (beyond f,) required to converge the statistics. T hen, theCPU tine
required for cbtaning converged statisticsw ith a shgke LES ist, + t,.W ith an ensemble
of realisations, statistics are accum ulated over both the ensem bl and tme. Thus, for
equivalnt sam ple, the ensem ble only needs to be advanced i tim e by theamountt./R.
The totalC PU cost br the ensam ble is thus R ¢ + t,/R), whith am ounts in an overhead
of (R — 1)i; over a singk realisation. I fthe ratio between the transint phase and the
tin e needed to converge statistics is am all, then the additional cost will be m oderate.
Inthe exam ples treated below , this additional cost is totally neglgble.M oreover, if the
LES isnot stationary and if there is no direction of ham ogenedty, the ensam bleaveraged

approach is presum ably the only way to obtan statistics.

2 1. Stats tially equivalnt and ndependent LES's

The know kdge of an ensembk of LES's can only be useful if the LES  elds u! are all
ndependent. Yet all these elds have to oorrespond to the sam e experin ental sitnation
if som e m eanngfill statistics are to be extracted from the ensmuble. W e therefore m ust
de ne what will be considered statistically equivalnt but ndependent LES elds. Al
though a proof of existence and uniqueness of solitions for the N avier{ Stokes equations
isnot yet available, from a practicalpomntofviw a ow described by the N avier{Stokes
equations or by an LES equation is assum ed to be fully de ned by the know ledge of

1. Thedoman P in whih the ow is considered.

3 The conditions on the boundary 0D of this daman u; @D,t) = b, t) where the
functns b; ) are given.
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3. The nitial conditons u; %, 0) = uf x) Vx € D.
However, n a sin ulation ofa turbulnt ow only thedom an and the boundary conditions
are rigorously xed. Indeed,because of the Jack of sensitivity to mitial conditions in
turbulence, di erent sim ulationsw ith di erent nitial conditions sharing som e properties
are considered to characterize the same ow . Thus, the requirem ent that the mitial
conditions are known is sam ew hat relaxed for turbulnt ows and the point (3) is thus
replaced by a weaker constrant:

3'. The nital condition u; (x,0) = u! (x;u)) i generated using randam num bers wuy
and satis es a certan num ber of constraints: P, 1= ps, s=1,...5.
For exam ple, n ham ogeneous turbulnce, the m ost In portant constrant w illbe on the
sectrum E k) ofu!':

kz/d e (e, 0)% = E &) 23)

where %] is the Fourier transform of u! and  is the s0ld angle in the wavenum ber
&k = k*d dk.For channel ow, one could inpose the plneaveraged pro ¥ of both
the vebcity U (y) and the Reynolis stress R,; ) :

(u?>1’,:

(tw) = U @)6i 1))z

U )b, 24)

Rij ) (25}

where x, y and : are repectively the bngitudial, the wallnom al, and the transverse
directions and (- - -}, ., represents the average i plnes parallel to the walL W e willnot
discuss h detail the m hin al constrants that m ust be in posad on the nitial conditions
1 order to have a reasonabk simulation. In fact, this m nin al set of constrants will
probably depend on the type of ow aswellas on the quantities that are m easured
the simultion. Here we only suppose that these constrants do exist h order to give a
precise de nition of equivalnt LES‘s:

i) TwoLES ‘sare statistically equivalent ifthedom an ofthe ow and theboundary
oonditions are the sam e and if the hitial conditions satisfy the sam e set of constrants.

Carryng an ensemble of equivalnt LES'’s can be com putationally e ective only if
the di erent m an bers in the set of LES's are ndependent. Here again, the de nition
of ndependent LES’s m ight depend on the ow aswell as on the quantities that are
measurad n the smulation. A bng the sam e Ine as for the de niton of statistically
equivalent LES's, we propose the bllow g de nition:

11) Two LES'sare statistically independent if their nitial conditions are generated

w ith uncorrelated random num bers uy .
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W e ram ark that br a stationary ow, such equivalent and ndependent nitial con-

ditions can be cbtained by runnig a shgle LES and recording several vebcity elds
separated by at Jeast one large-eddy tumover tin e when turbulnce is fully developed.

2 2. Universalm odel param eter n LES

C lasskal cbsure stategies n LES am ount to m odellng 7;; I tems of the resolred
vebcity eld:

Ty = Cmy, 1, (2.6)

where isthe Yerwith.The tensorm]; is supposed to characterize the dependence on
both the Iter width and the speci ¢ realisation of the large-scale ow U . On the other
hand, we w ill assum e that the param eter (' depends only on the type of ow and on the
lter shape and shouX not depend on any particular realisation of the large-scale velocity
ed i Inthe bllowing, we will refer to this assum ed property as the universality of the
m odel param eters 1 LES: For a given geom etxy and or a given Reynods num ker, the
m odel param eters shoutbe the sam ein allequivalntLES 's. T his conoept of un wersality
does not mmpl that the m odel param eters are constant n space and time. C learly,
C = Cxt)can bea ed quantity that needs to be adapted both 1 space and tin e o
the Iocal conditions of the ow . However, n our approach the variations of (' are not
supposad to take thelr orign In possible uctuations in the hrgesmalk ow . Rather, ¢
5 expected to depend only on the averaged properties of the ow, and I that sense it
charesm any properties w ith RAN S quantities.
The assum ption that the m odel param eters are universal has a direct 1 uence on
the form ulation ofm odels 1 an ensem ble of statistically equivalent LES's. Inthe equa-
tions (2 2), these m odels should have the Hllow ng structure:

T!-rj = Cmj I, 1, (27)

where C is now ndependent of the realisation ndex r.

Itm ust be noted, however, that the developm ent of the dynam i procedure n som e
ways challenges this viewpont. Inthe dynam i procedure, nfom ation from the am all
scales of T; js used for estim atihg the m odel param eters. This procedure is known to
produce hghly uctuatingm odel param eters. Such a property is som etin es regaxded as
a proof of the capability of the dynam i procedure to produce m odel param eters that
acoount or the cal conditions of the ow . H owever, these uctuations mn (7 are respon-

sbk for nstabilities, and som e averaging procedures are used o avod this di aculty.

t Of course, more sophisticated models with more than one term have also been proposed,
but the specific roles of the model parameters and of the model tensors m], remain the same.
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W e propose I Section 3 an approach that reconciles the dynam i procedure w ith the
concept of a universal m odel param eter. In this sense, t is farly di erent fram other
procedures m whih the concept of a universal param eter has not been adopted, such as
the bcaldynam i procedure developed by Ghosalet al (1995), the Lagrangian dynam i
procedure proposed by M eneveau et al. (1996}, or the tim e lagging procedure proposed
by Piom elliand L (1995).

2 3. New m odelling concepts

The know ledge of an ensamblk of LES elds opens new possibilities n the m odellng of
the 7, . Indeed, it s now conceivable to ntroduce an explicit dependence on ensamble-
averaged quantities nto them odek br; .

231.Modellmsa on the uctuating stan tensor

The rstmodelwepropose isbased on the uctuating part of the rate-ofstran tensor:

o= =2, (Efj - (E,-])) = -21,85] 28)

17 17

where v, is the eddy visoosity. T his form ulation has sam e nice properties. T he averaged
total disspation is gven by

€ = (vrdSLOST) + (S SL), 29)

and consequently the turbulnt disspation orighates only from the uctuating part of
the stai tensor. Them ean part contributes only to them olecular disspation . T hisprop-
erty ensures that the m odelw illnot produce disspation n a lam har region . Inaddition,
while this m odel is disspative on average {provided the eddy viscosity is positive), indi-
vilual realisations can have negative disspation, thus representing the nverse transfers
of energy from the an all unresolved scales to the brge ones (backscater) Leith 1990;
M ason & Tham son 1992; Caratiet al. 1995a). Itis generally believed that backscatter
orghates from uctuation phenom ena in the subgrid scales, and representation of this
e ect through uctuations i the strain tensor is thus very reasonable.

Results using thism odel for the wake ow are given In sections below . Tthas already
been used i the channel ow , where the plane of han ogeneity is ussd to com pute the
average (Schum ann 1975).H owever, the ensan ble of LES 's allow s the use of such m odels
even N fully hham ogenecus ows. O f course, m any other m odels m ght be considered
abng the sam e Ines, and the uctuating strain rate is not the only quantity that could
enter the m odel In this paper, we will restrict our nvestipations to themodel 28) n
the study of the wake ow .However, we m ention hereafter another possible use of the

know Jedge of an ensam ble of LES ‘s n the case of anisotropic  ow s.
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23 2. Anisotopic m odel

Anisotropi e ects are aln ost universally observed I turbulmnce. H owever, an isotropy
usually orignates from com plex hiteractionsbetween  ow direction, sold boundaries and
extemal constrants ke pressure gradient or gbbalrotation. Itis thus quite di cult o
predict a priori the m ain consequences of this anisotropy. In the context of statistcal
averaged LES, we have acoess at any nstant to m ean quantities that will display the
anisotropic structure of the turbulnce even for fully 1hom ogeneous ows. A m odel that
would directly take advantage of the ensemble of LES's could be:

o & WYik Vit Skt » 210)

where the factor u plys the rolke of an eddy viscosity but through an anisotropic relation

betw een the subgrid scale stress and the strain tensor. T he tensor 7vi; should be am easure

of the anisotropy. Itoould be constructed from the velbcity uctuations:
3{Suf du’

Vij = W)l (211)

T his m odel reduces to the clhssical eddy viscosity m odel for isotropic turbulnce (v =

d,5). The sign of the disspation depends only on the sign of i1 since the product of 7',—’J

and the stran tensor is given by
Tij S,j = llSij'Yik')’lekl = [ (S:]'Yik )2 . (212)

M orecver, if there isno turbulnce in cnedirection du, = C), them odelhas the property
that the camponents Ty, = Tq; = 0. This is an expected property that is m is==d by
itrop i eddy viscosity m odels.

3. Coupling the dynam ic procedure and the ensemble cfLES's
31. C bssial dynam ic procedures
T he dynam & procedure is based on an dentity (G em ano 1992) that relates theunknown

stress generated by di erent lters:
Lij+ i~ Ty = 0, (3.1)

whereTj; = ﬁ~ﬁ, ﬁj is the subgrid scale stress generated by the successive app lication
to thevebcity ed oftwo lersthat are respectively denoted by — and by~ .The Leonard
tensor s given by Li; = ﬁr'l\—z_j - % ﬁj . Itdepends only on @; so that it does not require
any m odelling. This dentity (31) is of course only valid for the exact and unknown
subgrid scalke stresses. W hen m odels are used, Ty; =~ Cm]; b)) and Ty = C'mlTj @], the
di erence Ey; = L) + (Y’/TTT:j - C'm?; between the right hand side and the left hand side
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of 3.1) can be consdered as a m easure of the perform ance of the m odel. T he dynam i©
procedure uses thism easure 11 order to prescrbe the m odel param eter (! by m nim zing
F,; .W hen a ham ogeneocus direction exists n the problan , the estin ation for (7 is given
by (G emn ano etal 1991;Lilly 1992; Ghosalet al 1995):

(Lij Mij)n

O~
(M Mijin

32)

where A;; = 77@ - mz; and the average (- - ) is supposed to be taken over the ho-
m ogeneous drection (s) . O bviously, this approach is restricted to special geom etrdes w ith
hom ogeneous direction (s) . C am plex geom etries require an alternative treatm ent n which
a bcalde nitin of the param eter ' can be proposed . This is the case n the bcal dy-
nam i procedure developed by Ghosaletal (1995) aswellas in the Lagrangin dynam i
procedure proposed by M eneveau et al. {1996). Inboth cases, the m odel param eter is
directly related to the hirgescale eld &, through the tensor L;; and M;; . Ttwill thus
vary from one realisation to another, even if the underlying LES's are supposed to be
equivalnt. A s already m entioned I Section 2 2, the dynam & procedure thus produces
m odel param eters that are ot universal. Inthe early stages of its developm ent, the fact
that the m odel param eters are directly relited to the speci ¢ realisation of the ow was
oonsiered advantageousbecause this allbwed them odelto bem ore adaptative. H ow ever,
this property proved to be problm ati because it generates highly variable m odel pa-
ram eters that cause num erical nstabilities. Sam e of these practical problem s have been

resolved In the aforem entioned bcaland Lagrangin vexrsions of the dynam i procedure.

3 2. Ensen blkavenged dynam ic procedure

T he ensam ble-averaged dynam i procedure (EAD P ) we propose here is conceptually very
cbee to the volum e-averaged or pkneaveraged versions (3 2) of the dynam X procedure.
The only di erence cam es from the nature of the average, which isnow an ensam ble aver-
age over the set of LES ’s. C onsderng that R LES’s (2 2) are com puted sin ultaneously,
the m odel param eter is now given by:

(L Myy)

(7 =~
(M M)’

33)

where (- - -) now represents the ensam bl average. T he expression (3 3) sonly valdd if the
param eter (7 is shw Jy dependent on space and can be taken out of the test  lter ™. Such
an assum ption is not very restrictive, how ever, shce the ensau ble averaging is lkely to
gm ooth out the rapid variations n the eHd. Inthe next Section, it will be seen that

the m odel coe cint does indesd becom e an oother and an oother as the ensam ble size



Statis timl ensan b of hirge eddy s ubtions 9
is ncreased. The form ubtion (3 3) guarantees that the m odel param eters are universal
since they depend only on the statistical properties of the large-scale velocity els.

Ina sense, the ensem ble of LE S ‘s corresponds to an arti cialdirection of ham ogeneity,
whith always exists independent of the com plexity of the ow . In the unexpected cases
in which them odel coe  cint ram ains signi cantly variable I space or large ensamble
sizes, the EAD P could be coupled w ith other approaches like the bcaldynam i procedure
develped by G hosalet al (1995), the Lagrangian dynam ic procedure proposed by M en-
eveau et al (1996), or the tin e lJaggihg procedure proposed by Piom elliand Lin (1995).
The couplng of the EADP with any of these m ethods would kad to a neglgbl cost

shee it would be used only ance for the whole ensamble.

In s e cases, the fact that the m odel param eter cannot be adapted to the gpeci ¢
realisation of the Jarge scale ow m ht be consiered as a drawback of the EADP. In
partiuhr, a greater adaptability m Ight be desirable for very ntem ittent ows wih,
for nstance, bealized turbulnt spots appearng hiside a bm nar ssa #H ennngsonet al
1987) . Indeed when the turbulnt spots appear random Iy n a statistically hom ogeneous
dom ain, the m odel param eter predicted by the EADP is quasiconstant and is weakly
a ected by the turbulent spots. In fact, the EADP in plicitly assum es that the m odel
tensor my; 1] 1 should, albne, take care of the turbulnce activity. W e realize however
that, because the peﬁ'ectm odel is not availablke, the assum ption of a universalparam eter
m ight be som etin es nappropriate, depending on both the nature of the ow and the
m odel adopted for m;; [ 1. However, it must be noted that the same di cully would
be encountered for m odeks that use param eters that are chosm a priori as well as for
dynam i m odels that are based on volim e or plane averagng. M oreover, In the test
cases presented In the ollow Ing sections, the predictions of the EAD P are encouraging.
M ore bealized approaches (Ghosal et al 1995; M eneveau et al 1996; Pxmelli & Lix
1995) for whih the assum ption of a universalm odel param eter is not adopted would
probably respond m ore strongly to nterm ittent ows. Itmust be noted, however, that
these generalized dynam i procedures are usually com bned w ith m odels that are based
on statistical approaches. In these cases, use of the ocalzed dynam X m odel In a sense
contrad °ts the underlying statistical assum ptionsused to build the eddy viscosity m odel.

F nally, we rem ark that the m odelparam eter is the only coupling between thedi erent
LES's. The di erence between DN S, LES, and an ensamble of LES's coupled through
the EADP is illstrated In gure 1. As a conssquence, the EADP is perfectly suited
for distrbuted processing on parallel com puters. The most natural in plem entation of

this procedure am ounts to running each m an ber of the ensanble of LES on a sparate
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DNS | DNS
u(t) u(t+dt)
a:DNS
LES | Compui®y _ LES
o * he model,~ G(t+d)
b LES
LES "C;x;p-ul‘c\ Cuompute rhs|{T,] LES
E“) é\lt\\c.n:n:lcil, in LES equations u,(t+dt,
e LES
¢ u,(t+dt)
i
) t |
i
i
. ] A
LES 3 Compute™y LES
u() Ji’i"_“‘:"i]a u(t+dt)

c: Ensemble LES

FIGURE 1. The differences between DNS, LES, and ensemble of LES’s using the EADP are
illustrated. In DNS (top), only the right hand side of the Navier-Stokes equations is needed
for advancing the velocity field in time. In traditional LES (middle), an additional modelling
term is needed. In the EADP (bottom), one substep, common for all the LES’s, is added for
computing the model parameters used in each of the simulations. This is the only point where
information is required from the other fields.

node. C anmunication between the di erent processes is lin ited to the com putation of
the m odel coe cint. O thexw ise each  eld %] Is advanced m tim e ndependently of the
others. T his property should guarantee very good scalbility if large ensan ble sizes are

explored.

4. Tests In isotropic turbulence
41. Demying turduknoe
The EADP described In the previous section was tested in decaying isotropic turbulence

r 32° LES's. The tensor m]; was chosen to correspond to the Sm agorinsky m odel:

)

o~ 20185 @1)

A series of num erial expermm ents has determ ned (Caratd et al 1996) how Ilarge the
ensem bl of sim ultanecus LES 'smust be (f.e. how large R should be). T he criteria used
to determ ne the m hin al size of the ensam ble were bcused on

1. The spatinl variability of .

2. T he percentage of negative (0.
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Ficurge 2. Typical one-dimensional profiles (left) and probability distribution function (right)
of  in decaying isotropic turbulence for R = 1 (long-dashed line), R = 4 (short-dashed line)
and R = 16 (solid line). The averaged value of (C) == 0.02 before clipping is almost independent
of the ensemble size. The expected “smoothing effect” of the enseinble averaging is reflected by
a rapidly decreasing deviation ol = ((C - (C))*) with R. For instance, ¢ = 0.3 for R = 1,
o =~ 0.06 for R = 4, aud o = 0.02 for R = 16.

3. C om parison w ith the volum e-averaged dynam i m odel.

4. C om parison w ith direct num erical sin ulations.
The results are quite encouraging. Itappears that with only 16 smultaneous LES's,
the ensem ble-averaged dynam i m odel perform s as well as the volim e-averaged m odel
T he gpatial variability of C' decreases drastically when R ncreases.This isalo re ected
1 the probability distribution function (PDF) of C (s=e gure 2). Sam e quantitative
m easirem ents of the spatial variability as a function of the ensamble size are given
Tabk 1. Inparticulyr, the fraction of negative C befre clppig drops from 41% for
R=1to15% frR = 16.Hence, the fiaction of points or which € has to be clipped is
still sgni cant even for R = 16. H owever, the conseguences of this clppng are Jess and
less sgni cant because the clpped valies of C have sm aller m agninides for hcreasing
ensem ble sizes. For nstance, the ratio betw een the averaged values of (' before and after
the clipping isonly 019 or R = 1 whik it reaches 091 for R = 16.Hence, the e ect of
clpping on physical quantities like the energy dissipation becam essmall for R > 16.

The com parieon between a 512° DNS and the dynam & m odel show s good agresm ent
both for the total resoled energy and for the spectra. T he ensan bleaveraged results
for R = 16 are ndiscnguishable from  the volim e-averaged values and only the EADP
results are pbtted on  gure 3.An ensamble of ndependent volum e-averaged LES‘'swas

run to allw com parison of both them eans and the standard deviations.

4 2. Foroed turtulence

W ehave run an ensam ble of 16 32% foreed turbulence LES 'sw ith zerom olecular viscosity'.

F igure 4 shows that the m ean resolved energy and the standard deviation evolve sin i
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R || Before clipping After clipping
(&) ac (C oc

0.018] 020 {0.089| 0.19
0.020| 0.12 |0.048| 0.081
0.020| 0.057 [0.031( 0.040
8 [[0.019¢ 0.031 [0.024] 0.024
16 |(0.018{ 0.020 [0.020| 0.017
32((0.018] 0.013 |0.019] 0.012

PN

TABLE 1. Average and standard deviation of the model coefficient (before and after clipping)
versus the ensemble size.

0.5

Total resolved energy

0.0
0.0 5.0

Time

Ficure 3. Comparison of the energy decay between the truncated DNS (solid line) and the
averaged energy predicted by the set of LES's using EADP (dashed line). The dotted lines
correspond the averaged energy # one standard deviation as predicted by the set of LES’s using
EADP.

lrly for both the volum e- and ensem bleaveraged m odels. T his show s that the coupling
induced by the cam putation of the m odel param eter through the EAD P approach does
not ntroduce spurious conrelations between the di erent m em bers of the ensam ble. The
standard deviations ram an sin ilar in the two approaches, ndiating that theLES elds
n the EADP remah nearly as ndependent as those 1 the ensamble of ndependent
volum e-averaged sin ulations. Itis also nterestihg to com pare the cam pensated energy
sectrum E (k) = E k) k"3 e=%/3 , where E (k) i the energy spectzum and ¢ is the dis-
spation rate. O f cours, wih 32% LES, we do not expect to observe a well developed
nertial range or to obtain a very goed estin ate of the K olm ogorov constant. H ow ever,
exam natin ofthe results n  gure 4 hdicates that the observed \K cln ogorov constant”

1s reasonable.

5. Tests nh wake ows

The ow oonsdered here i a tim eevolving plne wake for which data from both
direct num erical sinulations M oser & Rogers 1994; M oser et al 1997) and large eddy
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FIGURE 4. Resolved energy {left) and compensated energy spectrum (right} in forced isotropic
turbulence: ensemble- (solid boxes) versus volume-averaged (open boxes) dynamic procedure.
Dotted lines and dashed lines correspond to the mean + one standard deviation in the EADP
and in the volume-averaged dynamic model, respectively.

smulations (Ghosal & Rogers 1997) are availbbl. This ow is both statistically non-
stationary and nhom ogeneous and should thus be a m ore dem anding test of the EADP
than the hom ogeneous ow s studied In the previous section.

T he pssudospectral drect num erjcal sin ulation of the plane wake consdered here has
been described 1 detailby M oser & Rogers (1994) and M oser, Rogers & Ew ng (1997).
T he spatialdependence ofthe independent variables is represented 11 the pericdic stream -
w ise and spanw ise directions by Fourder basis finctions and the cross-stream dependence
is represented by a class of Jacobi polynam ials on a mapped I nite domain. Up to
512 x 195 x 128 m odes are required to accurately resolve the turbulnce. T he R eynolds
num ber based on the ntegrated mass ux de cit,

+0x
= —/ U ) — Us,) dy, 51)
-0
is Re = /v = 2000. Ina tim eevolving plane wake, the ntegrated mass ux de cit is
constant.

LES’s of the same ow usihg the dynam ic procedure, with a lered DNS el as
an initial condition, have been reported by Ghosal & Rogers {1997). The smulations
were psaudospectral lke the DN S, but the spatial dependence of the vortcity n the
nhom ogeneous cross-stream direction is represented i1 term sof Fourderm odeson a nite
dom am . T he appropriate non-perodic vebeity el is then calulated using the m ethod
of Corral & Jin enez (1995). T he num ber of m odes ussd in the LES'swas 64 X 48 x 16
and the sam e num ber of m odes and sam e num ericalm ethod have been adopted (Carati
& Rogers 1998) for the EADP LES's exam ined here. Thus each LES requires up to 260
tin es fewer m odes cam pared to the DN S.
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51. The sulprid-salk m odeks

Inthe present study, we have mvestigated three di erent m odels, all based on the eddy
viscosity concept. The st one is the Sm agornsky m odel ntroduced n the previous
section (41). Inthism odel, the nertial range scaling for the eddy viscosity vy ~ 7 #1/
Is expressed N temm s of the resolved strainrate tensor by using the approxin ation for the
dissipation rate € ~ utgz.,g:., . This approxin ation is required In traditional LE S because
a separate equation for the disspation rate is not usually com puted. However, n LES
based on the dynam ic procedure, the din ensional product C, = C£'/? can be predicted
directly. This has motivated W ong & Lilly 1994; Carati et al. 1995b) an altemative
m odel based on the nertial range scaling such as

-

. —a/8 —
M odelA : 7l =~ =20, / S

(52)

F nally, we have consilered a third m odel orwhih the talsorT[] is given by the expres-
sion (2 .8)

r

Models:  th~-20 " (3, -G)), 53)
where the brackets ndiate ensam bleaveragng over all realisations. T he possible advan-
tages of this Jast m odel have been disussed In section 2 3.

Inall threem odels, the sign of C (or of C, ) w illalso determ ne the sign of the subgrxd-
scale dissipation, since a negative (U corresponds to a negative eddy visoosity. Inorder to
avoid num erial ns@Abilities, the m odel param eter m ust then be set equalto am nimal
positive value (clipping procedure, see Ghosal et al (1995)) at ponts where the total
viscosity (eddy plis m okcular) is negative. For the Sm agorinsky m odel, the stability
condition

o (2?2,3":,[) R 54)
depends on the realisaton. T his is an undesirable property since (7 is suppossd to be a
universal ow characteristic for allm em bers of the ensem ble. An altemative form ulation
n whih (' is ndeed the sam e for all realiations results from the ©llow ng stability
condition
o m;ax{(zgz,ﬁ;,)l/z} + vy >0, 55)
Inthe lin it ofan 11 nite num ber of realisations, them axin um of the resolved stran-rate
tensor am plitude would be aln ost unbounded. H ence, or the Sm agorinsky m odel, it is
reasonable to sin ply In pose ' > 0.Form odelA , however, the siuation isdi exent.The
stability condition isnaturally the sam e n each realisation

—d4 /!
o e w >0, 5 6)
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For sim plicity, the sam e condition has been used form odelB .
52. The mital conditdons

Inpractice, nitial conditions for LES can be built etther by Yering a DNS {when it s
available) or by genemating a randam vebcity el satisfying some consants (as dis-
cussd 1 Section 21). For the EAD P, we have to generate R equivalent but ndependent

elds. Inthe case of iotropic turbulmce, the only constraint that had to be satis ed by
the nitial eld was the energy spectrum . W e thus have used R ogalb’s approach (1981)
to buid R nirial conditions w ith the sam e specttum and independent phases. For the
tin eevoling plane wake, random inithal conditions could be generated follow ng the
sam e approach as the one used for nitialising the DNS. However, for the plne wake, a
Jarge num ber of quantities are m easured and any num ber of them m ight be considered as
constrants that need to be m aintained by all realisations (eg.pro Js ofm ean velocity,
turbulent kinetic energy, enstrophy, etc.) . The m ain purpose of the present study s to
test the EADP rather than evaliating an hitialisation procedure. For that reason we
have used a sin ple trick to generate R statistically dentical initial eds.Our procedure
is based on the fact that the observed quantities are com puted through plane averages

and are thus nvariant under the change
ﬁ,‘(.’lf,'.l],z,t[])—*ai({ﬂ*'61,!j,2+(5:,t()). (57)

Thus by usihg R values of §8],07), R nidal vebcity elds are produced that clearly
satisfy the requirem ent that the LES realisations be statistically equivalent. H ow ever,
this procedure does not produce statistically ndependent nitial conditions, even with
randam choxes for (8,47), because the wo elds are dentical and simply shifted In
space. W ithout the subgrid m odel term s, all the statistis would rem ain dential for
all tin es. H owever, the m odel term s w ill have the desirablke e ect of decorxelating the
di erent m am bers of the ensem ble. T his results because the universalm odel texm s act at
the sam e (¢ — z) Jocation in all the realisations, not at the sam e relative position n the
chifted ow s. Exam ples of this de-correlation are given n gure5,n which the reduced
maxin aldi erence
™ 8%nsemble @) = M Nensemble (@)

@= ) 68

is given for various quantities @ lke the wake width, the resoled turbulnt kinetic

energy density ntegrated I y, and the resolved turbulnt knetic energy disspation
rate ntegrated in y. For these glbbal quantities, Q i orgnally 0 and rapidly reaches
valies of the order of 5% .W e hvestigated the behaviour of Q Pbra Jocalquantity, the

maxinum grid-pont valie of the stream w ise vorticity com ponent wi,,.x - H ere, Q s
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F1GURE 5. Test of de-correlation of the LES fields. The reduced maximal difference AQ is plotted
versus time for the wake width (left, solid line}, the resolved turbulent kinetic energy density
integrated in y (left, dashed line), the resolved turbulent kinetic energy dissipation integrated
in y (left, dotted line} and the maximum grid-point value of the x-component of the resolved
vorticity, wrmax (right)

orgnally 5% and rapdly reaches valies of the order of 20 to 40% . These m easuran ents
ndicate a farly rapid decorrelation of the di erent m em bers of the ensam ble.

A gain, we stress here that thism ethodolbgy used Hrbuilding the nitHal conditions has
the m aor advantage of guaranteeing that the statistical properties are nitially dential
for each realizatin, whilke resultspressnted n  gure 5 ndiate reasonable de-corelations.
However, whan no DN S s availble, tw illbe unavoidable to develp a suitablk approach
for buiding nitialconditions that w ill satisty the criteria of ndependence and equivalence
as described 11 Section 2.1. Inthat case, the constrants to be satis ed by the nhitial
conditnsw ill m ost probably com e from expermm entaldata.

5 3. Testsof convergence

In order to test the convergence of the EADP results for ncreasing valies of i, wo
types of tests were perform ed. First, the ensam bleaveraged values of several relevant
quantities in the tin e-evolving wake ow have been com pared for various ensem ble sizes.
Inpartiular, the results for () thewakew dth, (1) the turbulent kinetic energy density
ntegrated n y and (i7) the turbulnt khetk energy disspation rate ntegrated n y are
compared for R = 4, 8, 16, and 32. As can be ssen from  gure 6, only the turbulnt
ket energy ntegrated 1 y s a ected by the num ber of realis|ations. H owever, the
values obtaned wih 16 and 32 realisations are aln ost ndistinguishablk for all three

Second, the n uence of the ensem ble size on the com puted eddy viscosity was exam -
ied. The pro le of the mean eddy visoosity and the fraction of grid ponts for whih
the eddy viscosity has been clipped according to the criterion (56) are com pared for
the same valiesof R n gures 7 and 8.Asseen I gure 7, the eddy vizoosity pro e
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FIGURE 6. Convergence of the ensemble-averaged evolutions of the wake width (top left), the
resolved turbulent kinetic energy density integrated in y (top right) and the resolved turbulent
kinetic energy dissipation integrated in y (bottom). Various ensemble sizes are compared: R = 4
o,R=80, R=160,and R=32 A

depends only weakly on the num ber of realisations for values of R between 4 and 32, and
the pro ksarenearly denticalfor R = 16 and R = 32.A s expected, the fraction of grid
points requirng clippig of the m odel coe cint C rapidly decreasesw ith R ( gure 8).
T he total fraction of clipped ponts ntegrated I y s less than 1% br R = 16 during the
entire sin ulation. This, com bned with the very sm all change in most of the ensan ble-
averaged quantities as R is hcreased from 16 to 32, supports the adoption of R = 16
as a reasonable ensam ble size br both m odel testing and production LES. Because this
value of R is the sam e as that required for the sin ulation of ham ogeneous turbulnce, it
seem s reasonable to hope that R = 16 provides an adequate ensemble size for the EAD P
in even m ore com plicated geam etries.

T he com parison between various ensamble sizes is presented here only or model A
(2 4).The sam e conclusions conceming the convergence ofthe results and the appropriate

valie of R are obtained when either the Sm agorinsky modelormodelB (25) isusd.
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FiGure 7. Convergence of the eddy viscosity profile for ¢ = 0 (left) and for t = 250 (right).
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viscosity is normalized by the molecular viscosity.
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FIGURE 8. Profile of the fraction of grid points requiring clipping of the coeflicient (" at t =0
(left) and ¢t = 250 (right). Two ensemble sizes are compared: R = 4 solid line and R = 32 dashed
line.

54. Canparison of m odek

As akeady m entioned, an in portant m otivation for devebping the EADP is the possi-
bility of mvestigating new concepts In subgrid-scale m odelling. Here, the ltered DN S
of M oser, Rogers, & Ewing (1997) is com pared w ith the LES preditions of Ghosal &
Rogers (1997) and the predictions of the m odels presated n section 51.W e have alo
added the results of a LES w ithout a subgrid-scalem odel. Inall cases, and in agream ent
w ith the conclusion of the preceding section, the sinulations for the EADP have been
perfformed with R = 16.

The rst inportant conclusion is that the plneaveraged and ensam ble-averaged dy-
nam  procedures kad to ndisthguishablk results when they are applied w ith the sam e
m odel For nstance, n the LES ofG hosal& R ogers, the planeaveraged dynam ic proce-
dure was iIn plem ented w ith the standard Sm agorinsky m odel. Thelr results are dentical
to those obtaned when the Sm agorinsky m odel s used w ith the EADP . Inthe ©llow ng
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FIGURE 9. Evolution of the wake width (top left), the resolved turbulent kinetic energy density
integrated in y (top right) and the resolved turbulent kinetic energy production integrated in y
obtained from the filtered DNS o; the Smagorinsky model —, the model A D, the model B +
and no model x.

caom parison, the Sm agorinsky case w ill refer to both the EADP and the plne-averaged
LES of Ghosal& Rogers.

T he evolitibns of (i) thewakew ilth, @i2) the resolved turbulent knetic energy density
ntegrated I ¥, and @i1) the resolved turbulent kinetic energy production ntegrated n
y are presented in  gure 9. The wake width is dem nated by hrgescale ow features
and consequently is not strongly a ected by the m odels. A ctually, the prediction of
the LES w thout a subgrid-scale m odel {an underresolred DN S) provides a reasonable
approxin ation to the valie cbtaned by Itering the DN S data.

The turbulknt kinetic energy density ntegrated i y ismoredi cult to predict ushg
LES.Not usihg a subgrid-scale m odel resalts n poor prediction of resolved energy den-
sity.M odelA Ieads to aln ost the sam e result as the Sm agorinsky m odel This isa general
feature of the dynam ic procedure that has been noted previcusly W ong & Lilly 1994;
C aratiet al 1995b).H owever, w ithin the dynam ic procedure approach, m odelA iscom -
putationally m uch cheaper to in plem ent than the Sm agorinsky m odeland thism otivates
the use of the scaling (52) br the sub-grd stress nstead of (41). Themodel B, from
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whih the ensam bleaveraged resolved stran-rate has been ram oved, Jeads to resulis that
better t the DNS data n the early stages of the smulation. At Jater tin es, however,
this m odel is further from the ltered DNS valies than modelA and the Sm agorinsky
m odel. Ingeneral the predictions of all three m odels seem com parable.

T he evolition of the turbulent kinetic energy production ako shows the m portant roke
of the m ocdels. The no-m odel LE S prediction for the resolved energy production ismuch
too high 1 the early stage and too Iw at Jater tim es. Again, m odelA leads to aln ost the
sam e result as the Sm agorinsky m odel M odel B systar atically over-predicts the enexgy
production. However, i would be rather speculative to draw any de nitive conclision

regardhg which model 3 or B) isbetter from the results presented here.

6. Conclisions

The tests presented here have shown that the know Jedge of statistically equivalent
resolved velocity eldsm ay be usefiill n deriving new subgrid-scalem odels. W e have used
the additional mform ation availible from the di erent LES's to propose an ensem ble-
averaged version of the dynam X procedure. This dynam X procedure presents ssveral
advantages.

F Irst, a bcal version of the ensam bleaveraged dynam ic m odel is derived 1n the lm it of
large ensem ble sets. T he ocal form ulation doesnot rely on any ham ogeneity assum ption
and can be adapted to any geom etry, unlke the clssical volm e~ (or plane- or lne-)
averaged dynam ic m odels.

Second, the practical Iim it of Jarge ensamble sets s chsely approached for B ~ 16.
This s ndicated by m any diagnostics. For exam ple, the PDF of the m odel param eter
appears to be very peaked for R = 16 and its spatial variations decrease drastically for
Thcreasing ensam ble sizes and seem to be quitem id for R = 16. A 3o, all the m easured
quantities, both 1 hom ogeneous turbulence and n the plne wake, are aln ost dentical
for R = 16 and R = 32.This is, of course, a m a pr encouragem ent for further develbping
the EADP m ethodology. T he fact that the sam e value R = 16 appears to be appropriate
for both hom ogeneous turbulmoee and the plne wake suggests that this m ght be an
adequate ensem ble size for converged results even nmore complx ows.

Alo, the EADP reconciles the dynam © procedure w ith the conoept of a universal
param eter In turbulncem odelling. This s a very desirable property since it iscomm only
accepted that m odel param eters should depend only on the extemal conditions of the

ow and not on the particular realisation that is observed.

C onsidering the rapd develbpm ent of parallel com puters, the use of an ensanble of
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statistically equivalent and dependent LE S ‘s can be regarded as a very prom ing tech-
nigue. This technigue can be i plm ented with fairly amall ensseblke sizes. O righal
m odelling concepts that cannot be mplen ented In fully nham ogeneous ow's by con-
ventional LES technigues are possble w ithin the fram ework of the EADP and warxant
fiirther exam nation. M orecver, the additinal com putativnal cost generated by the use
of R sinultaneous LES ‘s could be com pensated by the fact that statistics can be acou-
mulated much faster with the ensamblke of LES's if cne ensures that all the realisations
are statistically ndependent.

T his work was can pleted prim arily during the 1996 and 1998 summ er program S or-
ganized by the Center for Turbulence Researdch, Stanford Univexrsity & NASA Ames
R esearch C enter. Fruitiil D iscussionsw ith W illiam C abot and ParvizM o are acknow I-
edged. D C . is \Chercheur Quali e du Fonds N ational de la Recherche Scinti que®,
Belyimm . T hiswork has been supported by the \convention FRFC 24563 98" and by the
NATO grant CRG 970213.
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